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SUMMARY 

Well-resolved two-dimensional numerical simulations of the unsteady separated flow past a normal flat plate at 
low Reynolds numbers have been performed using a fractional step procedure with high-order spatial 
discretization. A fifth-order upwind-biased scheme is used for the convective terms and the diffusive terms are 
represented by a fourth-order central difference scheme. The pressure Poisson equation is solved using a direct 
method based on eigenvalue decomposition of the coefficient matrix. A systematic study of the flow has been 
conducted with high temporal and spatial resolutions for a series of Reynolds numbers. The interactions of the 
vortices shed from the shear layers in the near- and far-wake regions are studied. For Reynolds numbers less than 
250 the vortices are observed to convect parallel to the freestream. However, at higher Reynolds numbers (500 and 
lOOO), complex interactions including vortex pairing, tearing and deformations are seen to occur in the far-wake 
region. Values of the drag coefficient and the wake closure length are presented and compared with previous 
experimental and numerical studies. 
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1. INTRODUCTION 

Wakes of bluff bodies have been extensively studied because of their relevance to drag on vehicles 
and flow over ship hulls and submarines. Such flows provide rich and interesting flow dynamics of 
considerable engineering relevance. Bluff bodies such as plates, discs, circular and rectangular 
cylinders and V-shaped prisms are used in combustors to enhance scalar mixing and provide a 
flame-stabilizing region. Several basic geometrical configurations including circular and rectangular 
cylinders, flat plates and aerofoils have been experimentally and numerically investigated to 
understand the fundamental aspects of flow separation and wake instabilities. The normal flat plate is 
the simplest bluff body configuration that can be used to understand wake instabilities and to 
develop turbulence models for application to practical problems. Unlike the case of the circular 
cylinder, the flow past a flat plate is characterized by fixed separation points at the edges of the 
plate. At low Reynolds numbers ( t40)  a steady wake is formed downstream of the plate. However, 
above a critical Reynolds number the separated shear layers become unstable, resulting in periodic 
alternate shedding of vortices. 
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There have been several previous experimental and numerical studies of the flow past a flat plate 
placed in a uniform stream. Almost all the experimental studies have been in the turbulent regime. Fage 
and Johansen' conducted one of the early measurements of the upstream and downstream pressures 
for various angles of attack and for a Reynolds number of 1.5 x lo5. Bradbury and Moss2 measured 
the turbulence statistics in the wake of a normal flat plate under uniform and sheared freestream 
conditions. Their measurements were conducted using a pulsed wire technique for Reynolds numbers 
in the range (1.5- 4-5) x lo4. The streamwise and spanwise normal stress components were found to 
be nearly equal, while the cross-stream normal stresses were significantly larger. Advances in 
experimental techniques such as pulsed wire anemometry, hot wire probes and split film techniques 
permitted more detailed studies of the flow characteristics. Perry and Steine? and Steiner and Perry4 
investigated the flow past normal and inclined plates at Re X 2 x 1 O4 using flying hot wire probes. The 
Strouhal number was found to vary from 0.161 to 0.248. The velocity field and phase-averaged 
streamline contours were identified for 16 phases of the vortex-shedding cycle. Kiya and Matsumura' 
applied the triple-decomposition method6 to study the turbulent wake flow past a normal flat plate at 
Re = 2.3 x lo4. The measurements of the time-mean streamwise velocity and Reynolds stresses were 
made using hot wire anemometry in a normal plane eight plate heights downstream of the plate. 
Arrangements of the three-dimensional ribs and rolls structures were postulated. Chua et ~ 1 . ~  
investigated the flow past non-oscillating and oscillating normal flat plates using tow-tank experiments. 
The Reynolds number was in the range 5 x 103-1 x lo4 at angles of attack varying fiom 85" to 95". 
Leder' performed measurements at Re = 2.8 x 1 O4 using laser Doppler anemometry and extracted six 
phases of the vortex-shedding cycle. Recently Lisoski' extended the work of Chua et aL7 in the tow- 
tank facility and investigated Reynolds numbers in the range 1 x 103-l.25 x lo4 at angles of attack of 
87.5" and 90". A visualization technique based on laser-induced fluorescence (LIF) captured the 
vortical structures in the wake of the plate. Several extensive reviewsIo-l3 have surveyed the research 
work on flow separation over bluff bodies, specifically circular and rectangular cylinders. 

Compared with the experimental studies, a relatively small number of numerical studies have been 
carried out for the flow past a normal flat plate. KuwaharaI4 applied the vortex element method and 
calculated values of drag coefficient between 2-0 and 4.0 for various Reynolds numbers. Kiya and 
Arie" applied the discrete vortex method and overestimated the mean drag coefficient by 20%-40% 
compared with the value measured by Fage and Johansen.' Castro and JonesI6 performed two- 
dimensional steady state numerical simulations for 100 5 Re 5 800 using finite difference and finite 
element techniques, assuming symmetry of the flow about the centreline. Because of the steady state 
assumption and the symmetry condition, the wake lengths were overpredicted significantly (e.g. 63 
plate heights for Re = 800). Chein and ChungI7 calculated the flow past a flat plate at angles of attack 
of 60" and 90" using the vortex blob method" and the vortex-aging scheme proposed by Kiya and 
Arie." Raghavan et al. l9 performed two-dimensional simulations using ARC2D, a computer 
programme based on a Eulerian finite difference method for solving the Navier-Stokes equations. 
Chua et ~ 1 . ~  applied the vortex blob/panel method to simulate the transient start-up of the flow past 
non-oscillating and oscillating plates and complemented their tow-tank experiments. Lisoski' further 
improved the numerical model of Chua et ~ 1 . ~  and used numerical flow visualizations to characterize 
the unsteady shedding cycle. Joshi" performed two- and three-dimensional simulations using a 
second-order-accurate finite volume (Harlow-Welch) time-splitting scheme. The Reynolds number 
was varied fiom 40 to 1000 for the two-dimensional simulations. The effects of base mass injection on 
the wake instability were also investigated. It was observed that above a certain injection velocity the 
vortex-shedding mechanism was inhibited. Tamaddon-Jahromi et al. 2' conducted two-dimensional 
simulation using the Taylor-Galerkdpressure correction time-stepping scheme for Re = 126,250 and 
500. The initial transient start-up process was seen to agree well with the experiments of Taneda and 
Honji?' The temporal flow development was also described through instantaneous streamlines. 
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The present study differs from the above-mentioned numerical studies both in the accuracy of the 
numerical scheme used and in the degree of resolution with which the simulations have been carried 
out. To this end we have first developed a numerical procedure based on a high-order finite difference 
formulation of the governing equations and implemented it on a massively parallel computer. Two- 
dimensional simulations with very fine grid resolution are performed for Reynolds numbers ranging 
from 80 to 1000. Systematic studies have also been conducted to investigate the influences of upstream 
and downstream computational domains as well as the number of grid nodes in the domain. While the 
adequacy of the two-dimensional assumption at high Reynolds numbers can be questioned, these 
calculations reveal interesting features of two-dimensional wakes. 

The paper is organized as follows. In Section 2 the numerical procedure is outlined. The 
computational details are presented in Section 3. The results of the calculations are discussed in 
Section 4. Conclusions are summarized in Section 5. 

2. NLTMERICAL PROCEDURE 

2.1. Governing equations and the fractional step method 

The current numerical procedure solves the non-conservative form of the two-dimensional time- 
dependent Navier-Stokes equations governing the motion of a constant property incompressible fluid. 
The non-dimensionalized mass and momentum equations written in vector form are 

v - u = o ,  (1) 

au 1 
at Re 
-+ (u * V)u = -vp +-v2u. 

The equations are non-dimensionalized by the plate height h, and the freestream velocity U, (see 
Figure 1). The Reynolds number is defined as Re = h,U, /v ,  where v is the kinematic viscosity. In the 
above equations u = {u ,  v )  is the instantaneous velocity field, p represents the non-dimensional 
pressure and t is the non-dimensional time. 

The governing equations (1) and (2) are discretized in time using a second-order-accurate time- 
splitting procedure. The convective and difisive terms are represented by a filly explicit Adam- 
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Figure 1 .  Schematic diagram of geometrical configuration and computational domain 
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Bashforth scheme. Thus the momentum equations are written as 

where H = -(u * V )  u and L = V ' u  represent the advection and diffusion terms respectively. 

time-splitting procedure has the following three steps: 
Equations ( 1 )  and (3) are solved in a decoupled manner with the hctional step m e t h ~ d . ~ ~ , ~ '  The 

1 
At 

v (vp"+') = - (V * ii), 

us+' - ij 
At 

= -(vp)"+'. 

In the first step the intermediate velocity field ii is calculated from the momentum equations without 
the contribution of the pressure gradient (equation (4a)). In the next step the pressure field is computed 
by solving the Poisson equation (equation (4b)). The divergence-free velocity at the (n + 1) time 
step is then obtained from equation (4c) by correcting the intermediate velocity field with the 
computed pressure gradient. Although the explicit representation of the viscous terms requires a small 
time step size at low Reynolds numbers, this restriction is eased at higher Reynolds numbers. 

2.2. Spatial discretization 

The spatial derivatives in equations (4a-c) are discretized with a high-order-accurate finite 
difference stencil on a collocated grid. In the collocated grid arrangement all variables (i.e. velocities 
and pressure) are located at the same physical location, in contrast with the staggered arrangement 
where velocities are centred with the pressure locations. In the following description N, and Ny denote 
the numbers of grid nodes in the directions x and y,  respectively and Ax and Ay are the corresponding 
grid sizes. 

The convective terms H are discretized using a fifth-order upwind-biased difference scheme.28 As 
an illustrative example, the term u(aU/aX) in the x-momentum equation is evaluated as follows: 

if u,, j > 0,  

Fourth-order accuracy is maintained for the near-boundary grid points by using unsymmetric finite 
difference  formulation^.^^ The diffusive terms L are evaluated using a fourth-order-accurate central 
difference scheme. For example, the term $ulaX2 is discretized as 
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The near-boundary second-order derivatives (i.e. i = 2 and Nx - 1) are expanded using a third-order- 
accurate unsymmetric finite difference stencil. The convective and diffusive terms in the transverse 
direction y are formulated in a similar manner. The pressure gradient (Vp)" + ' is evaluated using a 
fourth-order central finite difference scheme. For example, the streamwise pressure derivative aplh is 
discretized as 

for interior nodes. Near the boundary the derivatives are formulated using third-order-accurate 
unsymmetric stencils. 

A major issue in numerical schemes employing a collocated arrangement is the satisfaction of the 
divergence-free condition by the velocity field. Various formulations of the divergence and gradient 
operators have been investigated (see Reference 30 for details). Of these, a finite volume representation 
was found to result in the lowest mass imbalance in the velocity field. In this finite volume formulation 
the discretized pressure Poisson equation is written as 

where D represents the discretized divergence operator, G is the discretized gradient operator and E 
represents the cell face velocity and is computed from the collocated velocity field Q using a fourth- 
order-accurate interpolation f~nction.~' The discrete operator (D * Q, is formulated in terms of these 
cell face velocities using a second-order-accurate scheme as follows: 

where Ax, and Ay, represent the cell sues in the directions x and y respectively. The discrete gradient 
operator (Gp" + ')i,, is evaluated using a fourth-order central finite difference stencil (equation (7)). 
This formulation (equation (8)) has been shown3' to satisfjl the compatibility and integrability 
 condition^'^,^^ for the solution of the Poisson equation. The discretized pressure Poisson equation has 
the form 

for interior nodes. For the near-boundary nodes, smaller stencils are used. 
For non-uniform grids the grid metrics are included in the above stencils. Near interior obstacles the 

streamwise convective terms are represented using fourth- or fifth-order-accurate unsymmetic stencils 
depending on the position of the node. The streamwise diffusion terms for the nodes immediately 
adjacent to the obstacle are formulated with a three-point symmetric stencil. The expressions are given 
in Reference 25. 

2.3. Solution of the pressure Poisson equation 

procedure based on the matrix diagonalbation 
The discretized pressure Poisson equation is solved to machine accuracy using an efficient 

The two-dimensional discretized 
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Poisson equation is first written as 
D F ~  * P + P  - DE2,, = f ,  

where P is the pressure matrix of dimension N, x Ny D F ~  and D F ~ ~  are the finite difference operator 
matrices in the directions x and y of dimensions N, x N, and N,, x Ny respectively, D;2y represents the 
transpose of DF~,, and f = (D - E))i,, is the right-hand-side source matrix of dimension N, x My. The 
interior finite difference operator matrix D F ~  on a uniform grid is as follows: 

1 
D F ~  = - 

0 0  

-1 1 
25 -51 
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-1 28 
24 24 
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DFZ,, is similar to DFh. The operator matrices D F ~  and DF2,, are decomposed into their respective 
eigenvalues A, and A,, and eigenvector matrices Ex and Ey in the form 

D F ~  = E,A,IE,-~, D;2,, = EyA,,IEi'. (13) 

Substituting equations (1 3) into equation (1 1) results in 

E,A,IE;' P + PE,,~,,IE;' = f .  

Equation (14) is then premultiplied by E;' and postmultiplied by E,, to yield the expression 

A,IP' + P'AyI = f', (15) 

where P' = E; ' PE,, and f = E; ' fE,,. Equation (1 5) is an algebraic relation and cJ is readily calculated 
from 

Finally the pressure matrix P is obtained from 

P = E,P'E;~. 
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Thus the direct solver involves the following steps. 

(a) Evaluate an intermediate right-hand-side vector 
1 f' = E, my. 

(b) Solve for an intermediate pressure field 
L-1 

(c) Determine the pressure matrix 
P = E,P'E,-'. 

The eigenvalues Ax and 5 and their corresponding eigenvector matrices Ex and E,, as well as their 
inverses E;' and E;' are calculated a priori using EISPACK routines. 

Although the algorithm consists of a flexible solver for Poisson and Helmholtz equations on 
rectilinear grids, it is limited to regular domains. The presence of obstacles or baffles renders the 
equation non-separable and prevents the use of the matrix diagonalization technique. To circumvent 
this, the capacitance matrix is incorporated in the solution procedure. Briefly, the 
objective is to solve the non-separable Poisson equation, called the A-problem, satisfjing 

A - P = f ,  (19) 
where A is a sparse banded matrix describing the original problem whose non-zero coefficients are 
computed and stored. A 'separable' B-problem is constructed from the A-problem and can be solved 
using the eigenvalue decomposition algorithm (equations (1 8a-c)). The B-problem does not satisfy 
equation (1 9) but solves 

B * Pi = f .  

The matrix B has the same coefficients as the matrix A except at the M locations adjacent to the 
obstacle(s)/baffle(s). 

The capacitance matrix technique (CMT) is an algorithm that solves equation (20) using a &rect 
solver while concurrently satisfLing equation (19). To attain this objective, a capacitance matrix C is 
first constructed by solving (once for the entire problem) M B-problems with sequential unit 
perturbations to the right-hand sides of the equations. The residuals at the M positions in the 
corresponding A-problem are computed and become the column elements of C, where C is a matrix of 
size M x M. The final stage of the algorithm consists of computing the inverse of the capacitance 
matrix, C-'. These calculations are performed at the preprocessing stage of the simulation; further, for 
a prescribed grid configuration, C-' will be stored for subsequent use in the time-stepping procedure. 
During the time integration procedure the following solution steps are executed. 

(20) 

(i) Solve first the B-problem with the original source term using the direct solver algorithm: 

D F ~  * Pi +Pi * D&, = f. (214 

R * = A . P ,  - f .  (21b) 

(ii) Compute the residuals RA on the A-problem: 

(iii) Perturb the source term: 

(iv) Solve again the B-problem with the perturbed source term fr: 
f*  = f - C-'RA. 
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Steps (i) and (iv) are solved using the algorithm described above (equations (18a-c)). At the end of 
step (iv) the pressure field PZ is also the solution field of the original A-problem. It is to be noted that to 
construct the C-matrix, a Poisson equation with unit perturbation needs to be solved. However, such an 
equation in conjunction with Neumann boundary conditions is an ill-posed problem requiring at least 
one of the boundary conditions to be of Dirichlet type. 

2.4. Boundary conditions 

flow past a flat plate held normal to a freestream (Figure 1). 
The following boundary conditions are applied along the edges of the computational domain for the 

(i) At the inlet of the computational domain a uniform streamwise velocity U, of unity and zero 
cross-stream velocity v are specified. Further, the normal pressure gradient is set to zero. 

(ii) At the top and bottom boundanes, freestream conditions (u = 1, p = v = 0)  are imposed. 
(iii) At the outlet of the computational domain a convective boundary condition is applied of the 

form 

Amongst various outlet boundary conditions, equation (22) allowed the propagating structures 
to exit the computational domain with minimal dis t~r t ion.~~-’~ A convective velocity U, of 0.8 
was chosen a priori based on experiments of Kiya and Matsumura.’ This was subsequently 
found to agree well with the value inferred from the current simulations. A zero n o d  
pressure gradient at the outlet is used to update the cell-centred velocities. 

As discussed in Section 2.3, a Dirichlet-type condition is needed to solve the pressure field if the 
eigenvalue decomposition algorithm (equations (1 8a-c)) and the capacitance matrix technique 
(equations (2 la-d)) are used. Hence the freestream pressure condition p = 0 is applied at the top and 
bottom boundaries. Because of this condition, weak boundary-layer-type regions are seen to develop 
near these boundaries. However, these effects do not propagate to the region of interest, because the 
boundaries are placed far enough from the plate 0, = f 8). No ad hoc pressure boundary conditions 
are needed at the inlet and outlet boundaries while solving the pressure equation. However, in order to 
update the collocated velocities, a value for boundary pressure is required, which is currently obtained 
by assuming a zero normal gradient. Overall mass conservation is satisfied at every time step by 
appropriately scaling the outlet velocities. 

3. COMPUTATIONAL DETAILS 

3.1. Implementation and validation 

The numerical procedure has been implemented on the Connection Machine Model 5 (CM-5) 
computer in a data-parallel mode. The CM-5 is a distributed memory, massively parallel 
supercomputer with a ‘universal architecture’ supporting both SIMD and MIMD computing models. 
The current configuration at NCSA consists of up to 5 12 processors with each processing node having 
128 MFLOPS peak 64 bit floating point performance and 32 Mbyte memory. The programming 
environment is based on CMFORTRAN, a parallel version of FORTRAN 90. The required 
computational time was 5 - 3 ps per time step per grid node at a peak performance of 1.2 GFLOPS on a 
256-processor machine. Approximately 90% of the total CPU time is spent in the solution of the 
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pressure Poisson equation. Details of the data-parallel algorithm are discussed in Reference 38. 
The computer code has been initially validated for a number of model problems, including the 

Kovasnay the decay of a vortex4' and the flow in a driven cavity4' The L2- norm, representing 
the root mean square (RMS) of the difference between the numerical solution and the analpicayfine 
grid numerical solution, is used to determine the formal order of accuracy of the discretization. For the 
Kovasnay flow simulating the laminar flow behind a two-dimensional grid, the order of accuracy was 
observed to be 3-8 for u and 3.6 forp. For the decay of a vortex4o and the driven cavity flow4' the order 
of accuracy varied between 2 and 2.7, because the boundaries (where a lower-order stencil had to be 
used) rather than the interior dictated the flow physics. 

3.2, Grid refinement and computational domain size 

Having validated the numerical procedure for several test problems, simulations were performed for 
the case of a flat plate held normal to a freestream. A systematic study was first undertaken to 
determine the appropriate grid resolution and extents of the upstream and downstream computational 
boundaries. Table I presents the various grids and domain sizes considered in this study. Grids A-C use 
a uniform distribution, whereas grids D and E use non-uniform grid spacings. Also tabulated are the 
minimum and maximum grid sizes. The time step size was set to 2.5 x in all these calculations, 
which kept the maximum convective CFL number below 0.3 on the finest grid. The effects of the grid 
size were examined through the variation in the instantaneous drag coefficient CD defined as 

where pu and P d  are the instantaneous pressures on the upstream and downstream faces of the normal 
plate respectively. Figure 2 shows the temporal variation in the drag coefficient for the various grid 
sizes at a Reynolds number of 100. For a low mesh resolution of 129 x 129 nodes (grid A) the drag 
coefficient is seen to vary non-sinusoidally with humps at the peaks. With increasing grid resolution 
these humps disappear and the variation becomes sinusoidal. Further, the magnitude of the time-mean 
drag coefficient decreases from 3.7 (for grid A) to 2.9 (for grid E). Results obtained for grids D and E 
are seen to be nearly identical. Although grids B and D have the same number of grid nodes, the 
smaller grid spacing near the plate for grid D improves the predictions of the drag coefficient over that 
obtained with grid B. The same comparisons are valid between grids C and E. 

Table I. Summary of grid resolution and extent of computational domain 

Ax& 
Grid N x  x Ny hu, Xdla Iyb* Ytlb &mill (A4iJ AYInin AYmax 

A 129 x 129 [-5.8, 19.81 [-6.4, 6.41 0.2 0.2 0.1 0.1 
B 257 x 257 [-5.8, 19.81 [-6.4, 6.41 0.1 0.1 0.05 0.05 
C 513 x 513 [-5.8, 19.81 r-6.4, 6.41 0.05 0.05 0.025 0.025 
D 257 x 257 [-5.5, 201 [-8.0, 8.01 0.02 0.61 0.02 0.30 

E 513 x 513 [-5.5, 201 [-8.0, 8.01 0.01 0.39 0.0 1 0.15 
(0.37) 

(0.18) 

* xu and xd are the upstream and downstream distances respectively. 
yb and y, are the bottom and top widths respectively. 
Ark and Qrn are the maximum grid sizes upstream and downstream of the plate respectively. 
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Nondimensional Tim 

Figure 2. Temporal variation in drag coefficient for various grid configurations at Re = 100 

To examine the influence of the distance of the upstream boundary from the plate, calculations were 
performed for upstream distances (xu) varying from 2.5 to 15. A 513 x 257 non-uniform grid (with 
resolutions similar to grid D) was used in these calculations. Figure 3 shows the variation in the drag 
coefficient obtained from these calculations. It is seen that CD has a maximum value of 343 when an 
upstream distance of 2-5 is used but decreases to 3 for an upstream distance of 15. The results for 
upstream distances of 10 and 15 are indistinguishable. Simulations were also performed for several 
downstream distances (xd) varying between 10 and 25. The influence of the downstream distance on 
the drag coefficient was seen to be insignificant. 

4.0 

3.7 

3.5 

c, 3.2 1 1 
3.0 

2.7 

Figure 3. Temporal variation in drag coefficient for various upstream distances xu at Re = 100. Grid resolution is 5 13 x 257 
nodes 
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Based on this study, subsequent calculations were performed with a computational domain 
extending fiom -10 to 25 in the streamwise direction and fiom -8 to 8 in the cross-stream direction 
and a 513 x 257 non-uniform grid. In the x-direction the minimum grid size was 0.02 near the plate 
and the maximum grid sizes were 0.68 upstream of the plate and 0.19 downstream of the plate. In the 
y-direction the minimum and maximum grid sizes were 0.02 and 0.3 respectively. Numerical 
simulations were carried out for Re = 80, 100, 150,200,500 and 1000. A time step size of 2-5 x 
was used for these simulations. The starting conditions for the calculations were either a uniform 
(u = 1, v = 0) flow field or a flow field previously obtained at a lower Reynolds number. For Reynolds 
numbers of 80, 150 and 200 the calculations were performed only for five to six shedding cycles to 
determine the average drag coefficient. For Re= 100 and 500 the computations were performed for 
150 non-dimensional time units (approximately 25 shedding cycles) and the time-mean values were 
obtained by averaging for 125 time units. For Re = 1000 the simulations were carried out for 250 non- 
dimensional time units (approximately 33 shedding cycles) and temporal averaging was performed for 
225 time units. Although these calculations represent long-time integration, the statistics accumulated 
still show some time variation, reflecting the inadequacy of the sample sizes (5 x lo4 and 9 x lo4 for 
Re = 100 and 1000 respectively). The unsymmetric contours of the time-averaged streamfimction (see 
Figure 15 in Section 4.3) are a result of these lower sample sizes. Time signals of pressure and 
streamwise velocity at specific locations in the computational domain were stored every one-tenth time 
unit for calculating the power spectra and phase portraits. 

4. RESULTS 

4. I ,  Instantaneous flow jield 

Figures 4(a) and 4(b) present snapshots of the instantaneous flow field through contours of spanwise 
vorticity o, (az= &/ax - Wi3y) and streamhction $ respectively for Re= 100 at time instant 

I . . . . l . . . . I . . . . l . . . . , . . , ~ ,  

10 15 20 25 
(a) 

0 5 

1 .  . ' . ' . . . " ' '  " . " ~ . ' " I  
0 5 10 I5 20 25 

(b) 

Figure 4. Instanrane~us snapshot of unsteady flow for Re = 100: (a) spanwise vorticity- broken lines, (oz-, o.,, 
AuJ = (-4.5, -0.5, 0.25); full lines, (oz-, oz-, Amz) = (0.5, 4.5, 0.25); (b) streamlines, ($-, $,, A$) = 

(-1.5, 1.5, 0.1) 
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Figure 5. Time trace of streamwise velocity for Re = 100 in near-wake region (x = 2, y = 1) 

t = 90. These figures illustrate the development and spatial organization of the Karman vortices shed 
from the two shear layers. The negative (positive) spanwise vorticity corresponds to clockwise 
(counterclockwise) rotation of the vortices. As seen in Figure 4(a), the propagating vortices are 
convected parallel to the centreline 0, = 0) in an alternating pattern. Up to a distance of 10 plate heights 
the vortices are circular in cross-section with a radius of approximately 3 4 ,  but they become elliptical 
in shape W e r  downstream. The vortex cores, defined as the positions in the vortex at which I w, I is 
maximum, are initially located near the centreline and subsequently diverge away to y = f 1.5 for 
x 2 10. The average streamwise spacing of the cores for vortices of identical rotation is seen to be 
approximately four plate heights, while the average cross-stream distance separating vortices of 
opposite rotation is three plate heights. As a result of viscous diffusion, the strength of the vortex core 
(described by the magnitude of the spanwise vorticity) decreases substantially with downstream 
distance from I w, I -=5.1 at x =  1 to I w, I 0.9 at x=24. Figure 5 shows the time trace ofthe 
streamwise velocity in the near-wake region (x = 2, y = 1) over a selected time interval. The streamwise 
velocity is seen to vary between 0.4 and 1.3 of the freestream velocity and has a distinct harmonic, 
resulting in a limit cycle for the u-v phase portrait. Similar characteristics have been identified in the 
far-wake region for Re= 100. These observations are consistent with those of Karniadakis and 
Triantafyll~u~~ in the numerical study of the wake of a circular cylinder at the same Reynolds number. 

For Re = 500 the vortex-shedding process is observed to have substantially different dynamics from 
that described at Re = 100. Figure 6 illustrates the instantaneous w, at t = 120 for Re = 500. Compared 
with Re = 100, the magnitudes of the spanwise vorticity are larger at Re = 500. Further, as a result of 

I .  I .  I I . .  . .  I . . . . I . . . . I .  . . . ~  
0 5 10 1s a0 ' 25 

Figure 6. Instantaneous snapshot of spanwise vorticity field for Re = 500 at t = 120: broken lines, (oz-, oz-, AwJ = (-6.5, 
-0.5, 0.25); f i l l  lines, (or-, a=-, Am,) = (0.5, 6.5, 0.25) 
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lower viscous diffusion, it is seen that the vortices are more cylindrical and maintain their shape while 
propagating downstream. For example, at t = 120 the spanwise vorticity in the core has a magnitude of 
14.2 at x = 0.5 and decreases to 3-8 at x = 24. The wavelength of the vortex street is approximately four 
plate heights in the near-wake region, increasing to 6.3 in the far wake. Further, the path of the 
propagating vortices at Re = 500 is observed to differ substantially from that for Re = 100. At Re = 100 
the vortices are seen to propagate parallel to the centreline; however, interestingly, at Re = 500 the 
vortices are seen to converge towards the centreline before exiting the computational domain at 
y = f 0.5. The cross-stream spacing of the vortex cores is computed to be 2.4 in the region 5 I x I 15, 
decreasing to 0.9 for x 2 20. 

Plots of u-v phase portraits revealed a limit cycle in the near-wake region; however, a chaotic 
behaviour is identified in the far-wake region. Figure 7 presents the time trace of the streamwise 
velocity at n = 16 and y = 0 over a selected time interval. The valleys of the low-frequency oscillation 
(region I) are seen to be associated with the vortex propagation shown in Figure 6. However, at the 
peaks of the low-frequency oscillations (region 11), complex vortex interactions are observed. Figure 8 
presents a sequence of o, snapshots corresponding to a representative cycle of region I1 during the 
time span from 82.5 to 97. At t = 82.5 (Figure 8(a)), vortices A-E are identified at various locations in 
the computational domain. Vortices A, C and E have a clockwise rotation, while vortices B and D have 
a counterclockwise rotation. Based on the mechanism observed in region I, it was expected that these 
vortices would convect without further interaction. However, it is observed that vortex A has crossed 
the centreline and its core is located closer to B than for a typical shedding cycle of region I. As a 
result, the convection of vortex B is slowed down. At t = 82.5 (Figure 8(b)), B has an upward motion 
to preserve its momentum and enters the upper-half region of the computational domain, thus 
interacting with vortex C. Being of opposite spanwise vorticity, B cannot merge with C; instead, vortex 
B deforms C as shown in Figure 8(c). As a result, the motion of vortices B and C is hindered, but 
vortices D and E continue to move towards the interaction zone. At t=91 (Figure 8(d)), B and D 
interact in a manner similar to that described between B and C at t =  88-5. At the same time, E 
propagates towards D. As time progresses to t =  94 (Figure 8(e)), the pairing of C and E is initiated, 
resulting in an irregular blob of fluid, and vortex D is M e r  deformed and reduced in size. At the end 
of the interaction cycle, vortex D is displaced from its normal path and exits the computational domain 

1.2 1 11 
1 

Figure 7. Time tnice of streamwise velocity component at fiu-wake point (x = 16, y = 0)  for Re = 500. Far-wake interaction 
regions I and I1 are identified 
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with its core located at y = -3. This far-wake vortex interaction process is also seen to occur around 
t = 45 and 140 (see Figure 7). However, at these time spans the vortices undergo pairing in the lower 
half of the computational domain and have a counterclockwise rotation. These interactions were not 
seen to occur in our subsequent three-dimensional ~imulat ions,~~ as the vortices were observed to 
break down in the spanwise direction owing to secondary instabilities. Therefore the above pairing 
process is unique to two-dimensional flows. 

To study the effect of the Reynolds number on these vortex interactions, simulations were also 
performed at Re = 1000. Figure 9 presents contours of w, at t = 230 for Re = 1000. It is seen that in the 
near-plate region, small-scale vortical structures with positive w, merge with the vortex developing 
from the upper shear layer (of negative a,). This phenomenon was not observed at Re = 100 and 500. 
Further, the magnitude of w, in the vortex core exiting the computational domain at Re = 1000 is 
approximately 50% of that in the near-plate region. This value compares with 18% and 27% for 
Reynolds numbers of 100 and 500 respectively. The path of the propagating vortices is seen to be 
similar to that at Re = 500, with the core converging towards the centreline in the far-wake region. The 
vortex street also has a wavelength of approximately four plate heights. Figures lO(a) and lo@) show 
the time traces of the streamwise velocity in the near- and far-wake regions respectively. In the near- 
wake region a limit cycle with a small irregularity is observed (Figure lO(a)). In the far-wake region the 
velocity signature shows a behaviour similar to that observed at Re = 500, characterized by a low- 
frequency oscillation superimposed on the regular vortex-shedding frequency. However, we observe 
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Figure 8b. Spanwise vorticity contours for representative far-wake vortex interaction region I1 at Re = 500: (a) t = 82.5; (b) 
t =  85.5; (c) r = 88.5; (d) t = 91; (e) t = 94; (f) t = 97; broken lines, (ozm, oz-, Amz) = (-6.5, -0.5, 0.25); full lines, (oz-, 

oZ-, Amz) = (0.5, 6.5, 0.25) 

that the sequence of vortex interactions presented in Figure 8 for Re=500 does not occur at 
Re = 1000. Figure 1 1 shows snapshots of the spanwise vorticity for three time instances near the peak 
of the low-frequency oscillation. It can be seen that at Re = 1000 the vortices in the upper half of the 
domain do not pair but penetrate into the lower half and convect out of the domain. This difference is 
attributed to the effects of lower viscosity and consequent lower diffusion between adjacent vortices. It 
is evident from these simulations that the flow behaviour changes substantially amongst the Reynolds 
numbers considered. At high Reynolds numbers the Karman vortices do not propagate in the expected 

1 .  I I . , . l .  . . .  1 . . , . 1 , .  . . ,  
0 5 10 1s u) 25 

Figure 9. Instantaneous snapshot of spanwise vorticity field for Re= 1000 at t = 230: brokem lines, (oZ-, oz-, Aoz)  = (-8.5, 
-0.5, 0.1); full lines, ( w . ~ ,  wz-, Awz)=(0.5, 8.5, 0.1) 
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Figure 10. Time traces of streamwise velocity component for Re = 1000 in (a) near wake (x  = 2, y = 1) and @) far wake (x = 16, 
y = 0). Far-wake interaction regions I and I1 are identified 

alternating pattern but have complex aperiodic interactions in the far-wake region. Here these 
interactions were studied in detail for Re = 500 and 1000. However, they may occur at even lower 
Reynolds numbers around 250.43 

4.2. Shedding frequency and drag coeflcient 

Based on the time traces of the streamwise velocity in the near-wake region (x=2, y =  l), the 
primary Strouhal numbers (St=fhplUm) are computed to be 0.166,0.137 and 0.132 for Re= 100,500 
and 1000 respectively. The value at Re = 1000 may be compared with the measured values of 0.135 for 
Re = 4000-1000044 and 0.148 for Re = 3000-9000.9 It may also be compared with the values of 0.121 
and 0.161 computed by Lisoski' for 1 = 1 and 0436, where 1 is the circulation decay parameter in the 
discrete vortex method. The two-dimensional calculations of Joshi20 give Strouhal numbers of 0.175 
and 0.13 for Re = 100 and 1000 respectively. Tamaddon-Jahromi et al.*' have calculated St-values of 
0.173,0-165 and 0.1 15 at Re = 126,250 and 500 respectively. For the wake past a circular cylinder the 
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Figure 1 1. Spanwise vorticity contours for representative far-wake vortex interaction region I1 at Re = 1000: (a) t = 1 1 1 ; (b) 
t = 114; (c) t = 117; broken lines, (wzm, mzM, Amz) = (-8.5, -0.5, 0.25); full lines, (wzm, wz-, Amz) = (0.5, 8.5,  0.25) 

empirical formula suggested by R o s ~ ~ o , ~ ~  

St = 0.212(1 - 21-2/Re), 50 < Re < 150, (24) 

results in a Strouhal number of 0.167 at Re = 100. Our numerical simulations at Re = 100 give a value 
that differs by 0.6% from the above empirical value. 

The temporal development of the instantaneous drag coefficient is plotted in Figure 12 for the three 
Reynolds numbers. A distinct frequency with its superharmonics is observed for Re = 100 and 500, 
while a wide spectrum of frequencies is seen at Re = 1000. Because of the shed vortices from the upper 
and lower edges, the drag fluctuates at twice the Strouhal frequency. The RMS fluctuations of CD are 
computed to be 0-140 and 0.238 at Re = 100 and 1000 respectively. These compare with the measured 
values' of 0.219 and 0-133 at Re= 1000 and 5000 respectively. The variation in the time-mean drag 
coefficient cD with the freestream Reynolds number is displayed in Figure 13 and compared with the 
two-dimensional simulations of Joshi*' for 60 5 Re 5 1000 and the tow-tank measurements of Lisoski' 
at Re = 1000 and 5000. In the current study the the-mean drag coefficient is seen to increase rapidly 
up to Re = 500, after which it levels off. If the blockage correction proposed by Maske11,46 
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Figure 12. Temporal variation in drag coefficient for (a) Re = 100 and 500 and (b) Re = 1000 

where CQ represents the corrected drag coefficient and E is the blockage ratio, is applied (with E = & ) to 
the currently calculated drag coefficients, a value of 2.43 is obtained at Re = 100 and a value of 3.03 at 
Re = 1000. The value at Re = 1000 is higher than the measured values of 1.84 by Fage and Johansen' 
and 1.88 by Lisoski.' The differences are primarily due to the assumption of two-dimensionality in our 
calculations. The present two-dimensional value may be compared with the values of 3-39 obtained by 
Josh?' (from a two-dimensional simulation at Re = lOOO), 3.6 by Chua et al.' and 3-26 by Lisoski.' 

Figure 14 presents the distributions of the time-mean pressure coefficient c, = (jj - p W ) /  4 pU& on 
the upstream and downstream faces of the normal plate for the three Reynolds numbers. Also shown 
are the measurements of Fage and Johansen' at Re = 1.5 x lo5. The present computations predict a 
constant pressure coefficient on the downstream face with values of -2.1 at Re = 100 and -3.1 at 
Re = 1000. These compare with the value of - 1 a36 measured by Fage and Johansen. As a result of the 
lower base pressure coefficient computed at the downstream face of the plate, the two-dimensional 
simulations overpredict the mean drag by a factor of up to 1.6. 

4.3. Time-mean Jlow variables and linear stability analysis 

Figure 15 shows the time-mean streamlines for Re = 100 and 1000. The time-averaged flow field is 
characterized by an elongated wake whose length is seen to increase with increasing Reynolds number. 
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Figure 13. Variation in time-mean drag coefficient with freestream Reynolds number 

The wake closure length x,, (defined as the distance between the point of separation and the furthest 
downstream location on the centreline where the time-averaged streamwise velocity becomes zero) is 
calculated to be 1-3 at Re = 100, increasing to 14.6 at Re = 1000. The results obtained for Re = 500 are 
similar to those for Re = 1000. These values may be compared with the results of Castro and Jones,I6 
who performed steady two-dimensional simulations in the Reynolds number range from 100 to 800. 
Their calculations show a wake length of 7 at Re = 100, increasing to 63 at Re = 800. Castro and 
Jones16 solved the steady state equations assuming symmetry about the centreline and did not capture 
the effects of flow unsteadiness. The unsteady vortex street increases the momentum transfer, lowering 
the 'effective' Reynolds number4* and changing the time-mean wake characteristics. To our 
knowledge, time-mean velocity data are not available at the Reynolds numbers considered in this study. 
However, experimental data are available at much higher Reynolds numbers (obtained by Bradbury 
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Figure 14. Distribution of time-mean surface pressure coefficient on upstream and downstream faces of plate 
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Figure 15. Time-mean streamlines for (a) Re= 100 and (b) Re= 1000 

and Moss' at Re = 2.6 x lo4 and Leder' at Re = 2.8 x lo4). At these Reynolds numbers the measured 
wake lengths were 1.92 and 2.5 respectively. Comparisons with these data are inappropriate, because at 
these high Reynolds numbers the flow is highly three-dimensional and turbulent. 

The growth of the separated shear layer may be described by the vorticity thickness 6, as defined by 
Brown and R0shk0:~' 

where Ati = tim-timh is the difference between the maximum velocity on the high-speed side of the 
shear layer, ti-, and the minimum velocity on the low-speed side, zimin. The streamwise variation in 
the vorticity thickness is shown in Figure 16. Below the centreline the vorticity thickness is assigned a 
negative value for plotting purposes. The vorticity thickness grows rapidly from separation up to 
x=2.5 and then tapers off downstream. The time-mean centre of the separated shear layer (yc) is 
defined4' by analogy with the mixing layer, as the transverse location at which the time-mean 
streamwise velocity has a value of 0.67Ati + timin. The time-mean centre of the separated shear layer, 
shown in Figure 17, attains heights of 1.6hp, 1.2hp and l-Ohp for Re = 100, 500 and 1000 respect- 
ively. 

The instability of the separated shear layers can be corroborated with linear stability theory. This 
theory has been successfully applied in the study of unforced free shear layer f10ws.49*50 Monkewitz 
and HuerreS0 define a non-dimensional frequency 

where 6, is the vorticity thickness (equation (26)), f is the shedding frequency and 0 = (ii- + ii-) 
is the average velocity across the shear layer. Their analysis has shown that the most amplified 
frequency w& is approximately 0.21. This corresponds to the location in the shear layer from where 
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Figure 16. Streamwise distribution of vorticity thickness 6,  for various Reynolds numbers: -, Re = 100; - - - -. Re = 500; 
, R e =  I000 

the vortices are shed. We have evaluated w* along the two shear layers at various positions from the 
separation points (x x 0) to the edges (x = 0.25). For the three Reynolds numbers (100,500 and 1000) 
considered in our calculations, w* was found to be 0.034,0.023 and 0-025 at the separation points and 
0.2 16,0.2 12 and 0.222 at the edges of the shear layers respectively. Thus the computed values of w* at 
the edges from where the vortices are shed are consistent with inviscid instability theory. 

5. CONCLUSIONS 

Well-resolved numerical simulations have been carried out to understand the structure and dynamics of 
the wake flow past a normal flat plate. The numerical procedure is based on a fifth-order upwind- 

:'---7 2 
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biased scheme for the convective terms and a fourth-order-accurate stencil for the diffusive terms. A 
direct solver based on eigenvalue decomposition and the capacitance matrix technique has been used to 
solve the pressure Poisson equation in the presence of obstacles in the computational domain. 
Systematic grid refinement studies have been made to determine the appropriate mesh resolution and 
size of the computational domain. 

Two-dimensional unsteady simulations have been performed for Reynolds numbers varying from 80 
to 1000. The calculated shedding frequencies are seen to agree satisfactorily with the experiments. The 
signatures of the drag coefficient are seen to differ significantly between Re= 100 and 1000. At 
Re = 100 the Karman vortices are seen to propagate parallel to the centreline and the drag fluctuates 
sinusoidally. However, at Reynolds numbers of 500 and 1000, complex vortex interactions and 
transport are observed to occur in the far wake. Two distinct interaction periods have been identified in 
the far wake. In one interaction period the vortices propagate in the normal manner, but in the second 
period the vortices pair and cross over the centreline. These interactions are reflected through a low- 
frequency modulation of the velocity time trace. The time-mean wake length is seen to increase from 
1.3 for Re = 100 to 14.6 for Re = 1000. The time-mean drag coefficient is seen to vary with Reynolds 
number from 2.8 at Re = 80 to 3.71 at Re = 1000. 

The above results provide an understanding of the wake dynamics within the assumption of a two- 
dimensional flow. In reality the flow becomes three-dimensional at Reynolds numbers around 200. 
Consequently the two-dimensional simulations underpredict the base pressure, resulting in higher 
values of the drag coefficient. By including the three-dimensional effects, we have recentl?’ obtained 
more favourable comparisons with experiments. 
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